Enthalpies of Formation, Combustion, and Vaporization of the 35 Nonanes and 75 Decanes

Gollakota R. Somayajulu, Jing Chao, Charles O. Reed, Jr., ${ }^{\dagger}$ Atri Das, John R. Kennedy, and Bruno J. Zwolinski*
Thermodynamics Research Center, Texas Engineering Experiment Station, Texas A\&M University, College Station, Texas 77843

Abstract

Using an improved correlation procedure based on the trigonal or triatom additivity concept, the standard enthalpies of formation and combustion for the liquid and ideal gaseous states and the standard enthalpy of vaporization for the liquid state, at 298.15 K , are calculated for 35 isomeric nonanes ($\mathrm{C}_{9} \mathrm{H}_{\mathbf{2 0}}$) and 75 isomeric decanes ($\mathrm{C}_{10} \mathrm{H}_{22}$).

The enthalpies of formation, $\Delta H_{f}{ }^{\circ}$, combustion, $\Delta H_{c}{ }^{\circ}$, and vaporization, $\Delta H_{v}{ }^{\circ}$, at $25^{\circ} \mathrm{C}$ for the 35 nonanes and 75 decanes were calculated by Labbauf, Greenshields, and Rossini (9), using the empirical equations developed by Greenshields and Rossini (6). The coefficients of the molecular structural parameters for calculating ΔH_{f}° (liq, 298.15 K) were obtained from a leastsquares fit of selected experimental values for 32 alkanes in the range C_{5} to C_{9}. Those for computation of $\Delta H_{v}{ }^{\circ}$ (liq, 298.15 K) were derived based on the selected $\Delta H_{v}{ }^{\circ}$ values for 27 alkanes in the range C_{5} to C_{8}.

Somayajulu and Zwolinski $(25,26)$ have proposed a new concept of trigonal or triatomic additivity for calculating the thermochemical and thermodynamic properties of polyatomic substances. Recently, they improved their previously developed triatomic additivity method by including the branching and buttressing effects in deriving the empirical equation (27). The aim of this work is the use of this improved correlation procedure, called the generalized trigonal additivity procedure, to reevaluate the values of ΔH_{f}° and $\Delta H_{v}{ }^{\circ}$ for the liquid isomeric nonanes, $\mathrm{C}_{9} \mathrm{H}_{20}$, and decanes, $\mathrm{C}_{10} \mathrm{H}_{22}$, at 298.15 K for which experimental data are currently not available. Based on these calculated results, the $\Delta H_{f}^{\circ}(\mathrm{g}, 298.15 \mathrm{~K}), \Delta H_{c}{ }^{\circ}$ (liq, 298.15 K), and $\Delta H_{c}{ }^{\circ}$ ($\mathrm{g}, 298.15 \mathrm{~K}$) for these isomers were also derived.

Calculation Method

The empirical equations employed for calculating the $\Delta H_{\mathrm{f}}{ }^{\circ}$ (liq, 298.15 K) and $\Delta H_{V}{ }^{\circ}$ (liq, 298.15 K) for isomeric nonanes and decanes are given below in units of kilocalories per mole $(1 \mathrm{cal}=4.1840 \mathrm{~J}):$

$$
\begin{gathered}
\Delta H_{f}^{\circ}(\mathrm{liq}, 298.15 \mathrm{~K})=-13.1835-4.6157 n-2.0043 W_{2} \\
+0.4691 W_{3}+0.0274 W_{4}+0.6807 Y_{1} \\
+0.0217 W_{34}-0.0165 W_{44}+0.0432 n_{23}+0.1567 n_{24} \\
+0.6501 n_{33}+1.1238 n_{34}+2.1332 n_{44} \\
\quad+0.0535 Q_{0}+1.8871 Q_{2}+4.6911 Q_{3} \\
\quad+0.0174 Q_{33}+0.0793 Q_{34}+0.9301 Q_{44} \\
\\
\Delta H_{v}^{\circ}(\mathrm{liq}, 298.15 \mathrm{~K})=-2.3720+2.3720 n-0.8484 W_{2} \\
-0.2367 W_{3}-0.1031 W_{4}+0.2310 Y_{1}+0.1217 W_{34} \\
-0.0696 W_{44}+0.2301 n_{23}+0.5233 n_{24}+0.7363 n_{33} \\
+1.3373 n_{34}+2.2684 n_{44}+0.0619 Q_{0}-0.0838 Q_{2} \\
\\
-0.2039 Q_{3}+0.0529 Q_{33}+0.0866 Q_{34}+0.2808 Q_{44}
\end{gathered}
$$

These two equations were deduced from the generalized equation, i.e., eq 10 of ref 27 , which contains 19 structural parameters. The numerical values of the structural parameters derived for each isomeric nonane and decane are summarized
in Table I. In the above equations, the coefficients for the structural parameters were obtained by fitting the selected ΔH_{f}° (liq, 298.15 K) and $\Delta H_{v}{ }^{\circ}$ (liq, 298.15 K) values by multiple linear regression procedures. The sources and method of selection of these ΔH_{f}° and $\Delta H_{v}{ }^{\circ}$ have been described (27). The abbreviations used to represent the molecular formulas in Table I are: $\mathrm{m}=$ methyl, $\mathrm{e}=$ ethyl, $\mathrm{ip}=$ isopropyl; for example, 243 mmip 5 = 2,4-dimethyl-3-isopropylpentane.

The values of $\Delta H_{\mathrm{f}}{ }^{\circ}$ (liq, 298.15 K) and $\Delta H_{v}{ }^{\circ}$ (liq, 298.15 K) calculated from the above two equations were employed in computing the $\Delta H_{\mathrm{f}}{ }^{\circ}(\mathrm{g}, 298.15 \mathrm{~K}), \Delta H_{\mathrm{c}}{ }^{\circ}$ (liq, 298.15 K), and $\Delta H_{c}{ }^{\circ}(\mathrm{g}, 298.15 \mathrm{~K})$ for each alkane with the following equations:

$$
\begin{gathered}
\Delta H_{f}^{\circ}(\mathrm{g}, 298.15 \mathrm{~K})=\Delta H_{\mathrm{f}}^{\circ}(\text { liq, } 298.15 \mathrm{~K}) \\
\\
+\Delta H_{v}^{\circ}(\text { liq, } 298.15 \mathrm{~K}) \\
\Delta H_{\mathrm{c}}^{\circ}(\mathrm{liq}, 298.15 \mathrm{~K})=-68.315-162.366 n \\
\\
-\Delta H_{f}^{\circ}(\text { liq, } 298.15 \mathrm{~K}) \\
\Delta H_{c}^{\circ}(\mathrm{g}, 298.15 \mathrm{~K})=-68.315-162.366 n \\
\\
-\Delta H_{f}^{\circ}(\mathrm{g}, 298.15 \mathrm{~K})
\end{gathered}
$$

where n is the number of carbon atoms in the given alkane $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ molecule. The enthalpy of combustion ($\Delta \mathrm{H}_{\mathrm{c}}{ }^{\circ}$, in kilocalories per mole) represents the heat evolved in the combustion of the given alkane hydrocarbon, in the state indicated, in gaseous oxygen to form gaseous carbon dioxide and liquid water, at 298.15 K and constant pressure, with all reactants and products in their appropriate standard reference states. For deriving the above equations for calculating $\Delta H_{c}{ }^{\circ}$, the values $\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}, \mathrm{~g}, 298.15 \mathrm{~K}\right)=-94.051 \mathrm{kcal} \mathrm{mol}^{-1}(7,14)$ and $\Delta H_{\mathrm{f}}^{\circ}$ $\left(\mathrm{H}_{2} \mathrm{O}\right.$, liq, 298.15 K$)=-68.315 \mathrm{kcal} \mathrm{mol}{ }^{-1}(7,20)$ were used.

Results and Discussion

Based on the above five equations and the structural parameters given in Table I for the isomeric nonanes and decanes, the enthalpies of vaporization, formation, and combustion of the 35 nonanes and 75 decanes were calculated. The results are presented in Table II.

It is important to note that the values of the structural parameters listed in Table I can be used for calculating other physical and thermodynamic properties for these isomers. In such calculations, appropriate experimental data on the required property for these isomers are needed for evaluating the numerical coefficients, as shown in the equations for the computation of ΔH_{f}° (liq, 298.15 K) and $\Delta H_{v}{ }^{\circ}$ (liq, 298.15 K), by a multiple linear regression procedure.

The reliability of the derived results depends mainly on the accuracy of the experimental data selected for evaluation. In principle, the property values adopted for structural correlation study should be measured in the same laboratory for consistency. In reality, however, it is almost impossible to obtain such values.

The enthalpies of combustion of alkanes were measured by Thomsen, Berthelot, and others, in the European laboratories in the period from about 1850 to 1900. In the U.S. some data

	n	W_{2}	W_{3}	W_{4}	$W_{5}{ }^{\text {a }}$	Y_{1}	Q_{0}	Q_{2}	Q_{3}	Q_{33}	Q_{34}	Q_{44}	W_{34}	W_{44}	n_{23}	n_{24}	n_{33}	n_{34}	n_{44}
9	9	7	6	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 m 8	9	8	6	5	4	1	0	0	0	0	0	0	0	0	1	0	0	0	0
3 m 8	9	8	7	5	4	1	0	0	0	0	0	0	0	0	2	0	0	0	0
4 m 8	9	8	7	6	4	1	0	0	0	0	0	0	0	0	2	0	0	0	0
3 e 7	9	8	8	6	4	1	1	0	0	0	0	0	0	0	3	0	0	0	0
4 e 7	9	8	8	7	4	1	1	0	0	0	0	0	0	0	3	0	0	0	0
22 mm 7	9	10	6	5	4	4	0	0	0	0	0	0	1	1	0	1	0	0	0
$23 \mathrm{mm7}$	9	9	8	5	4	2	0	0	0	1	0	0	0	0	1	0	1	0	0
$24 \mathrm{mm7}$	9	9	7	6	3	2	0	0	0	0	0	0	0	0	3	0	0	0	0
25 mm 7	9	9	7	5	5	2	0	0	0	0	0	0	0	0	3	0	0	0	0
26 mm 7	9	9	6	5	4	2	0	0	0	0	0	0	0	0	2	0	0	0	0
$33 \mathrm{mm7}$	9	10	8	5	4	4	0	0	0	0	0	0	1	1	0	2	0	0	0
$34 \mathrm{mm7}$	9	9	9	6	3	2	0	0	0	2	0	0	0	0	2	0	1	0	0
35 mm 7	9	9	8	6	4	2	0	0	0	0	0	0	0	0	4	0	0	0	0
44 mm 7	9	10	8	7	2	4	0	0	0	0	0	0	2	0	0	2	0	0	0
23me6	9	9	8	7	3	2	1	0	0	2	0	0	0	0	2	0	1	0	0
24me6	9	9	8	7	4	2	1	0	0	0	0	0	0	0	4	0	0	0	0
33me6	9	10	10	6	2	4	1	0	0	0	0	0	1	0	0	3	0	0	0
34em6	9	9	10	7	2	2	1	0	0	3	0	0	0	0	3	0	1	0	0
223 mmm 6	9	11	9	5	3	5	0	0	0	0	1	0	1	1	1	0	0	1	0
224 mmm 6	9	11	7	7	3	5	0	1	0	0	0	0	2	1	2	1	0	0	0
225 mmm 6	9	11	6	5	6	5	0	0	0	0	0	0	1	2	1	1	0	0	0
233 mmm 6	9	11	10	5	2	5	0	0	0	0	1	0	1	0	0	1	0	1	0
234 mmm 6	9	10	10	6	2	3	0	0	0	5	0	0	0	0	1	0	2	0	0
235 mmm 6	9	10	8	6	4	3	0	0	0	1	0	0	0	0	2	0	1	0	0
244 mmm 6	9	11	8	7	2	5	0	1	0	0	0	0	2	0	1	2	0	0	0
334 mmm 6	9	11	11	5	1	5	0	0	0	0	2	0	1	0	1	1	0	1	0
33 ee 5	9	10	12	6	0	4	2	0	0	0	0	0	0	0	0	4	0	0	0
223 mme 5	9	11	10	7	0	5	1	1	0	0	2	0	2	0	2	0	0	1	0
$233 \mathrm{mme5}$	9	11	12	5	0	5	1	0	0	0	2	0	0	0	0	2	0	1	0
$234 \mathrm{mem5}$	9	10	10	8	0	3	1	1	0	6	0	0	0	0	1	0	2	0	0
2233 mmmm 5	9	13	12	3	0	8	0	0	0	0	0	1	1	0	0	1	0	0	1
2234 mmmm 5	9	12	10	6	0	6	0	1	0	3	2	0	2	0	0	0	1	1	0
2244 mmmm 5	9	13	6	9	0	8	0	0	1	0	0	0	6	0	0	2	0	0	0
2334 mmmm 5	9	12	12	4	0	6	0	0	0	0	4	0	0	0	0	0	0	2	0
10	10	8	7	6	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 m 9	10	9	7	6	5	1	0	0	0	0	0	0	0	0	1	0	0	0	0
3 m 9	10	9	8	6	5	1	0	0	0	0	0	0	0	0	2	0	0	0	0
$4 \mathrm{m9}$	10	9	8	7	5	1	0	0	0	0	0	0	0	0	2	0	0	0	0
5 m 9	10	9	8	7	6	1	0	0	0	0	0	0	0	0	2	0	0	0	0
3 e 8	10	9	9	7	5	1	1	0	0	0	0	0	0	0	3	0	0	0	0
4 e 8	10	9	9	8	6	1	1	0	0	0	0	0	0	0	3	0	0	0	0
22 mm 8	10	11	7	6	5	4	0	0	0	0	0	0	1	1	0	1	0	0	0
23 mm 8	10	10	9	6	5	2	0	0	0	1	0	0	0	0	1	0	1	0	0
24 mm 8	10	10	8	8	5	2	0	0	0	0	0	0	0	0	3	0	0	0	0
25 mm 8	10	10	8	7	6	2	0	0	0	0	0	0	0	0	3	0	0	0	0
26 mm 8	10	10	8	6	5	2	0	0	0	0	0	0	0	0	3	0	0	0	0
27 mm 8	10	10	7	6	5	2	0	0	0	0	0	0	0	0	2	0	0	0	0
33 mm 8	10	11	9	6	5	4	0	0	0	0	0	0	1	1	0	2	0	0	0
34 mm 8	10	10	10	7	5	2	0	0	0	2	0	0	0	0	2	0	1	0	0
35 mm 8	10	10	9	8	5	2	0	0	0	0	0	0	0	0	4	0	0	0	0
36 mm 8	10	10	9	6	6	2	0	0	0	0	0	0	0	0	4	0	0	0	0
$44 \mathrm{mm8}$	10	11	9	8	5	4	0	0	0	0	0	0	2	1	0	2	0	0	0
45 mm 8	10	10	10	8	5	2	0	0	0	2	0	0	0	0	2	0	1	0	0
$4 \mathrm{np7}$	10	9	9	9	6	1	1	0	0	0	0	0	0	0	3	0	0	0	0
4ip7	10	10	10	9	6	2	1	0	0	2	0	0	0	2	0	1	0	0	0
23me7	10	10	10	8	5	2	1	0	0	2	0	0	0	0	2	0	1	0	0
24 me 7	10	10	9	9	6	2	1	0	0	0	0	0	0	0	4	0	0	0	0
25me7	10	10	9	7	6	2	1	0	0	0	0	0	0	0	4	0	0	0	0
33 me 7	10	11	11	7	5	4	1	0	0	0	0	0	1	1	0	3	0	0	0
34 me 7	10	10	11	9	5	2	1	0	0	3	0	0	0	0	3	0	1	0	0
35me7	10	10	10	8	6	2	1	0	0	0	0	0	0	0	5	0	0	J	0
43 me 7	10	10	11	9	4	2	1	0	0	3	0	0	0	0	3	0	1	0	0
44me7	10	11	11	9	4	4	1	0	0	0	0	0	2	0	0	3	0	0	0
223 mmm 7	10	12	10	6	5	5	0	0	0	0	1	0	1	1	1	0	0	1	0
224 mmm 7	10	12	8	9	4	5	0	1	0	0	0	0	2	1	2	1	0	0	0
225 mmm 7	10	12	8	6	7	5	0	0	0	0	0	0	1	2	2	1	0	0	0
226 mmm 7	10	12	7	6	5	5	0	0	0	0	0	0	1	1	1	1	0	0	0
233 mmm 7	10	12	11	6	5	5	0	0	0	0	1	0	1	1	0	1	0	1	0
234 mmm 7	10	11	11	8	4	3	0	0	0	5	0	0	0	0	1	0	2	0	0
235 mmm 7	10	11	10	7	6	3	0	0	0	1	0	0	0	0	3	0	1	0	0

	n	W_{2}	W_{3}	W_{4}	$W_{5}{ }^{\text {a }}$	Y_{1}	Qo	Q_{2}	Q_{3}	Q_{33}	Q_{34}	Q_{44}	W_{34}	W_{44}	n_{23}	n_{24}	n_{33}	n_{34}	n_{44}
236 mmm 7	10	11	9	6	6	3	0	0	0	1	0	0	0	0	2	0	1	0	0
244 mmm 7	10	12	9	10	3	5	0	1	0	0	0	0	3	0	1	2	0	0	0
245 mmm 7	10	11	10	8	5	3	0	0	0	2	0	0	0	0	3	0	1	0	0
246 mmm 7	10	11	8	9	4	3	0	0	0	0	0	0	0	0	4	0	0	0	0
255 mmm 7	10	12	9	6	7	5	0	0	0	0	0	0	1	2	1	2	0	0	0
334 mmm 7	10	12	12	7	4	5	0	0	0	0	2	0	1	1	1	1	0	1	0
335 mmm 7	10	12	10	8	5	5	0	1	0	0	0	0	2	1	2	2	0	0	0
344 mmm 7	10	12	12	8	3	5	0	0	0	0	2	0	2	0	1	1	0	1	0
345 mmm 7	10	11	12	8	4	3	0	0	0	6	0	0	0	0	2	0	2	0	0
23 mip 6	10	11	11	10	4	3	1	1	0	6	0	0	0	0	1	0	2	0	0
33 ee 6	10	11	13	9	3	4	2	0	0	0	0	0	1	0	0	4	0	0	0
34ee6	10	10	12	10	4	2	2	0	0	4	0	0	0	0	4	0	1	0	0
223 mme 6	10	12	11	9	4	5	1	1	0	0	2	0	2	1	2	0	0	1	0
224mme6	10	12	9	9	6	. 5	1	1	0	0	0	0	2	2	3	1	0	0	0
233 mme 6	10	12	13	8	3	5	1	0	0	0	2	0	1	0	0	2	0	1	0
234 mme 6	10	11	12	9	4	3	1	0	0	6	0	0	0	0	2	0	2	0	0
243mme6	10	11	12	10	3	3	1	1	0	7	0	0	0	0	2	0	2	0	0
244mme6	10	12	11	9	4	5	1	1	0	0	0	0	2	0	1	3	0	0	0
253 mme 6	10	11	10	9	6	3	1	0	0	2	0	0	0	0	3	0	1	0	0
334mme6	10	12	13	9	2	5	1	1	0	0	3	0	2	0	2	1	0	1	0
$343 \mathrm{mme6}$	10	12	14	8	2	5	1	0	0	0	3	0	1	0	1	2	0	1	0
$2233 \mathrm{mmmm6}$	10	14	13	6	3	8	0	0	0	0	0	1	2	1	0	1	0	0	1
$2234 \mathrm{mmmm6}$	10	13	12	8	3	6	0	1	0	4	2	0	2	1	1	0	1	1	0
2235 mmmm 6	10	13	10	7	6	6	0	0	0	0	1	0	1	2	2	0	0	1	0
2244 mmmm 6	10	14	9	10	3	8	0	0	1	0	0	0	6	1	0	3	0	0	0
2245 mmmm 6	10	13	9	8	6	6	0	1	0	1	0	0	2	2	1	1	1	0	0
$2255 \mathrm{mmmm6}$	10	14	7	6	9	8	0	0	0	0	0	0	2	6	0	2	0	0	0
2334 mmmm 6	10	13	14	7	2	6	0	0	0	0	5	0	1	0	1	0	0	2	0
2335 mmmm 6	10	13	11	8	4	6	0	1	0	0	1	0	2	0	1	1	0	1	0
2344 mmmm 6	10	13	13	8	2	6	0	1	0	3	3	0	2	0	0	1	1	1	0
2345 mmmm 6	10	12	12	8	4	4	0	0	0	8	0	0	0	0	0	0	3	0	0
3344 mmmm 6	10	14	15	6	1	8	0	0	0	0	0	2	2	0	0	2	0	0	1
243 mmip 5	10	12	12	12	0	4	1	0	1	12	0	0	0	0	0	0	3	0	0
233 mee5	10	12	15	9	0	5	2	1	0	0	3	0	0	0	0	3	0	1	0
$2233 \mathrm{mmme5}$	10	14	15	7	0	8	1	1	0	0	0	2	2	0	0	2	0	0	1
$22334 \mathrm{mmmmm5}$	10	15	15	6	0	9	0	1	0	0	3	2	2	0	0	0	0	1	1

a Note that W_{5} does not appear as one of the parameters of the new generalized trigonal additivity equation. It was used in the earlier equation and hence is reported in this table along with other parameters.
were obtained by Richards and his co-workers from about 1905 to 1915 . The results published by these early workers in the field were critically reviewed by Rossini (21, 22). Due to the lack of high purity samples and the use of inadequate experimental equipment, their reported $\Delta H_{c}{ }^{\circ}$ values are only of historical interest at the present time.

Employing specially purified hydrocarbon samples and high precision experimental equipment, Rossini and his co-workers (19) have measured the $\Delta H_{c}{ }^{\circ}$ for eight gaseous alkanes, C_{1} to C_{5}, and nine liquid normal alkanes, C_{5} to C_{12} and C_{16}. For evaluation of ΔH_{f}° (liq, 298.15 K) for isomeric alkanes, they also determined the enthalpies of isomerization at 298.15 K for 5 hexanes (16), 9 heptanes (17), 18 octanes (18), and 5 nonanes (8). Incorporating the above data with appropriate $\Delta \mu^{\circ}$ (19) and $\Delta H_{f}^{\circ}(298.15 \mathrm{~K})$ for $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})$, the authors obtained the best values for the $\Delta H_{c}{ }^{\circ}$ (liq and $\mathrm{g}, 298.15 \mathrm{~K}$) and $\Delta H_{\mathrm{f}}{ }^{\circ}$ (liq and $\mathrm{g}, 298.15 \mathrm{~K}$) of the 52 alkane hydrocarbons, C_{1} to C_{8} and $n-C_{9}$ to $n-C_{20}$. These reported values were adopted for the American Petroleum Institute Research Project 44 Tables (23, 28).

Additional combustion calorimetric measurements were made for the following compounds: 5 gaseous alkanes C_{1} to C_{4} (13), 2 gaseous butanes (15), 3 gaseous pentanes (12), 3 liquid pentanes (4); and 9 heptanes (1), 2 octanes (5), 12 nonanes (2 , 3), 3 decanes (2), 1 undecane (2), 2 dodecanes (2), and 1 hexadecane (2), all in the liquid state. Additional data on $\Delta H_{v}{ }^{\circ}$ (298.15 K) for 6 liquid n-alkanes C_{12} to $\mathrm{C}_{17}(10), 3$ solid n-alkanes C_{18} to C_{20} (10), and 35 isomeric liquid alkanes C_{5} to C_{10} (11) were also reported.

In this work the numerical coefficients in the equations for calculating $\Delta H_{f}{ }^{\circ}$ (liq, 298.15 K) and $\Delta H_{v}{ }^{\circ}$ (liq, 298.15 K) were obtained by multiple linear regression of 84 selected ΔH_{f}° (298.15 K) and $48 \Delta H_{v}{ }^{\circ}$ (298.15 K) values, respectively (27). The calculated enthalpies of formation and isomerization were reported to be in good agreement with the available experimental data (27).

The calculated $\Delta H_{\mathrm{v}}{ }^{\circ}$ and $\Delta H_{\mathrm{f}}{ }^{\circ}$ at 298.15 K for liquid nonanes and decanes are compared with the available experimental data in Table III. It should be emphasized that there were two $\Delta H_{f}{ }^{\circ}$ (n-nonane, liq, 298.15 K) values reported in the literature. The difference between these two values is $0.16 \pm 0.25 \mathrm{kcal} \mathrm{mol}^{-1}$, which is within the assigned experimental uncertainty of each set of measurements. Our results are consistent with the experimental data shown in Table III. All of the calculated values are within the experimental uncertainties of the measured ones except for 2,2,3,4-tetramethylpentane for which the calculated value is more positive than the Johnson, Prosen, and Rossini experimental value of $-66.37 \pm 0.28 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}(8)$ by 0.45 kcal mol^{-1}. A correlation procedure recently developed by Scott (24) also gives a value more positive than the experimental value by $0.47 \mathrm{kcal} \mathrm{mol}^{-1}$. The large difference for this single compound may call for a refinment in the procedure for the estimation of steric energies involving $1,5 \mathrm{H} \cdots \mathrm{H}$ interactions.

Also listed in Table III are the calculated values of Labbauf, Greenshields, and Rossini (9), for comparison. In general, the differences between the two sets of values for $\Delta H_{f}{ }^{\circ}(\mathrm{liq})$ are as follows: less than $0.20 \mathrm{kcal} \mathrm{mol}^{-1}$ for 23 isomeric nonanes, $0.20-0.42 \mathrm{kcal} \mathrm{mol}^{-1}$ for eight other nonanes, and 0.48-1.83

Table II. Standard Enthalples of Vaporization, Formation, and Combustion for the 35 Nonanes and 75 Decanes in kcal mol ${ }^{-1}$ at $298.15 \mathrm{~K}^{\mathbf{a}}$

Compound	$\Delta H_{v}{ }^{\circ}(\mathrm{liq})$	$\Delta H_{1}^{\circ}{ }^{\circ}(\mathrm{liq})$	$\Delta H_{f}{ }^{\circ}$ (gas)	$\Delta H_{c}{ }^{\circ}$ (liq)	$\Delta H_{c}{ }^{\circ}$ (gas)
9	11.10	-65.80	-54.70	-1463.81	-1474.91
2 m 8	10.71	-67.08	-56.37	-1462.53	-1473.24
3 m 8	10.71	-66.57	-55.86	-1463.04	-1473.75
$4 \mathrm{m8}$	10.60	-66.82	-56.22	-1462.79	-1473.39
3 e 7	10.66	-65.98	-55.32	-1463.63	-1474.29
4 e 7	10.56	-65.95	-55.39	-1463.66	-1474.22
$22 \mathrm{mm7}$	10.06	-68.88	-58.82	-1460.73	-1470.79
$23 \mathrm{mm7}$	10.41	-66.80	-56.39	-1462.81	-1473.22
$24 \mathrm{mm7}$	10.22	-67.82	-57.60	-1461.79	-1472.01
$25 \mathrm{mm7}$	10.32	-67.85	-57.53	-1461.76	-1472.08
$26 \mathrm{mm7}$	10.33	-68.36	-58.03	-1461.25	-1471.58
$33 \mathrm{mm7}$	10.11	-67.84	-57.73	-1461.77	-1471.88
$34 \mathrm{mm7}$	10.36	-66.24	-55.88	-1463.37	-1473.73
35 mm 7	10.21	-67.31	-57.10	-1462.30	-1472.51
44 mm 7	10.09	-67.74	-57.65	-1461.87	-1471.96
23me6	10.55	-66.63	-56.08	-1462.98	-1473.53
24me6	10.17	-67.23	-57.06	-1462.38	-1472.55
33 me 6	10.18	-66.64	-56.46	-1462.97	-1473.15
34em6	10.36	-65.63	-55.27	-1463.98	-1474.34
223 mmm 6	9.87	-67.57	-57.70	-1462.04	-1471.91
224 mmm 6	9.48	-67.60	-58.12	-1462.01	-1471.49
225 mmm 6	9.58	-70.11	-60.53	-1459.50	-1469.08
233 mmm 6	9.99	-67.18	-57.19	-1462.43	-1472.42
234 mmm 6	10.17	-66.44	-56.27	-1463.17	-1473.34
235 mmm 6	9.91	-67.88	-57.97	-1461.73	-1471.64
244 mmm 6	9.62	-66.97	-57.35	-1462.64	-1472.26
334 mmm 6	10.07	-66.33	-56.26	-1463.28	-1473.35
33 ee 5	10.17	-65.82	-55.65	-1463.79	-1473.96
$223 \mathrm{mme5}$	9.90	-65.18	-55.28	-1464.43	-1474.33
233 mme 5	10.06	-65.95	-55.89	-1463.66	-1473.72
234mem5	9.99	-64.47	-54.48	-1465.14	-1475.13
2233 mmmm 5	9.84	-66.51	-56.67	-1463.10	-1472.94
2234 mmmm 5	9.76	-65.92	-56.16	-1463.69	-1473.45
2244 mmmm 5	9.02	-66.92	-57.90	-1462.69	-1471.71
2334 mmmm 5	9.95	-66.43	-56.48	-1463.18	-1473.13
10	12.28	-71.92	-59.64	-1620.05	-1632.33
2 m 9	11.90	-73.21	-61.31	-1618.76	-1630.66
3m9	11.89	-72.69	-60.80	-1619.28	-1631.17
$4 \mathrm{m9}$	11.79	-72.67	-60.88	-1619.30	-1631.09
5 m 9	11.79	-72.67	-60.88	-1619.30	-1631.09
3 e 8	11.84	-72.10	-60.26	-1619.87	-1631.71
4 e 8	11.74	-72.07	-60.33	-1619.90	-1631.64
22 mm 8	11.24	-75.05	-63.81	-1616.92	-1628.16
23 mm 8	11.60	-72.92	-61.32	-1619.05	-1630.65
24 mm 8	11.30	-73.92	-62.62	-1618.05	-1629.35
25 mm 8	11.40	-73.95	-62.55	-1618.02	-1629.42
26 mm 8	11.50	-73.97	-62.47	-1618.00	-1629.50
27 mm 8	11.51	-74.49	-62.98	-1617.48	-1628.99
33 mm 8	11.29	-73.96	-62.67	-1618.01	-1629.30
34 mm 8	11.54	-72.37	-60.83	-1619.60	-1631.14
35 mm 8	11.29	-73.41	-62.12	-1618.56	-1629.85
36 mm 8	11.50	-73.46	-61.96	-1618.51	-1630.01
44 mm 8	11.21	-73.88	-62.67	-1618.09	-1629.30
45 mm 8	11.44	-72.34	-60.90	-1619.63	-1631.07
4 np 7	11.64	-72.05	-60.41	-1619.92	-1631.56
4ip7	11.40	-72.26	-60.86	-1619.71	-1631.11
23 me 7	11.50	-72.29	-60.79	-1619.68	-1631.18
24 me 7	11.25	-73.33	-62.08	-1618.64	-1629.89
25 me 7	11.46	-73.38	-61.92	-1618.59	-1630.05
33 me 7	11.30	-72.78	-61.48	-1619.19	-1630.49
34 me 7	11.44	-71.73	-60.29	-1620.24	-1631.68
35 me 7	11.35	-72.84	-61.49	-1619.13	-1630.48
43me7	11.44	-71.73	-60.29	-1620.24	-1631.68
44me7	11.28	-72.69	-61.41	-1619.28	-1630.56
223 mmm 7	11.04	-73.88	-62.84	-1618.09	-1629.13
224 mmm 7	10.57	-73.83	-63.26	-1618.14	-1628.71
225 mmm 7	10.78	-75.84	-65.06	-1616.13	-1626.91
226 mmm 7	10.85	-76.33	-65.48	-1615.64	-1626.49
233 mmm 7	11.10	-73.30	-62.20	-1618.67	-1629.77
234 mmm 7	11.25	-72.54	-61.29	-1619.43	-1630.68
235 mmm 7	11.10	-73.67	-62.57	-1618.30	-1629.40
236 mmm 7	11.21	-74.20	-62.99	-1617 77	-1628.98

Table II (Continued)

Compound	$\Delta H_{v}{ }^{\circ}(\mathrm{liq})$	$\Delta H_{1}{ }^{\circ}(\mathrm{liq})$	$\Delta H_{t}{ }^{\circ}$ (gas)	$\Delta H_{c}{ }^{\circ}($ liq $)$	$\Delta H_{c}{ }^{\circ}$ (gas)
244 mmm 7	10.72	-73.18	-62.46	-1618.79	-1629.51
245 mmm 7	11.05	-73.62	-62.57	-1618.35	-1629.40
246 mmm 7	10.81	-75.17	-64.36	-1616.80	-1627.61
255 mmm 7	10.83	-75.26	-64.43	-1616.71	-1627.54
334 mmm 7	11.08	-72.68	-61.60	-1619.29	-1630.37
335 mmm 7	10.73	-72.84	-62.11	-1619.13	-1629.86
344 mmm 7	11.16	-72.61	-61.45	-1619.36	-1630.52
345 mmm 7	11.29	-72.01	-60.72	-1619.96	-1631.25
23 mip 6	11.07	-70.52	-59.45	-1621.45	-1632.52
$33 \mathrm{ee6}$	11.27	-71.56	-60.29	-1620.41	-1631.68
$34 \mathrm{ee6}$	11.45	-71.12	-59.67	-1620.85	-1632.30
$223 \mathrm{mme6}$	10.91	-71.25	-60.34	-1620.72	-1631.63
224 mme6	10.56	-73.28	-62.72	-1618.69	-1629.25
233 mme6	11.16	-72.00	-60.84	-1619.97	-1631.13
234 mme 6	11.25	-71.93	-60.68	-1620.04	-1631.29
243 mme 6	11.12	-69.99	-58.87	-1621.98	-1633.10
$244 \mathrm{mme6}$	10.81	-72.08	-61.27	-1619.89	-1630.70
253 mme 6	11.01	-73.54	-62.53	-1618.43	-1629.44
$334 \mathrm{mme6}$	11.12	-70.05	-58.93	-1621.92	-1633.04
343 mme 6	11.24	-71.41	-60.17	-1620.56	-1631.80
$2233 \mathrm{mmmm6}$	10.87	-72.53	-61.66	-1619.44	-1630.31
2234 mmmm 6	10.82	-71.50	-60.68	-1620.47	-1631.29
2235 mmmm 6	10.48	-75.15	-64.67	-1616.82	-1627.30
$2244 \mathrm{mmmm6}$	10.18	-72.18	-62.00	-1619.79	-1629.97
2245 mmmm 6	10.31	-74.11	-63.80	-1617.86	-1628.17
2255 mmmm 6	9.92	-78.25	-68.33	-1613.72	-1623.64
$2334 \mathrm{mmmm6}$	11.13	-71.84	-60.71	-1620.13	-1631.26
2335 mmmm 6	10.61	-72.60	-61.99	-1619.37	-1629.98
2344 mmmm 6	10.98	-70.84	-59.86	-1621.13	-1632.11
$2345 \mathrm{mmmm6}$	11.06	-72.73	-61.67	-1619.24	-1630.30
3344 mmmm 6	11.27	-70.40	-59.13	-1621.57	-1632.84
243 mmip 5	10.72	-67.81	-57.09	-1624.16	-1634.88
233mee 5	11.05	-68.88	-57.83	-1623.09	-1634.14
$2233 \mathrm{mmme5}$	11.4	-68.44	-57.30	-1623.53	-1634.67
$2243 \mathrm{mmme5}$	10.73	-68.45	-57.72	-1623.52	-1634.25
$2343 \mathrm{mmme5}$	11.03	-69.24	-58.21	-1622.73	-1633.76
$22334 \mathrm{mmmmm5}$	11.12	-68.79	-57.67	-1623.18	-1634.30
$22344 \mathrm{mmmmm5}$	10.65	-69.86	-59.21	-1622.11	-1632.76
$1 \mathrm{kcal}=4.184 \mathrm{~kJ}$.					

Table III. Comparison of Calculated Standard Enthalpies of Vaporization and Formation for Liquid Nonanes and Decanes with Experimental Data in $\mathrm{kcal} \mathrm{mol}^{-1}$ at $298.15 \mathrm{~K}^{a}$

Compound	Exptl data	Calcd values		Compound	Exptl data	Caicd values	
		Labbauf et al. ${ }^{b}$	This work			Labbauf et al. ${ }^{b}$	This work
Standard Enthalpy of Vaporization							
9	11.10°	11.10	11.10	225 mmm 6	$9.58{ }^{\text {d }}$	9.73	9.58
223 mmm 6	$9.87{ }^{\text {d }}$	9.97	9.87	235 mmm 6	9.91°	10.05	9.91
224 mmm 6	$9.48{ }^{\text {d }}$	9.73	9.48	10	$12.28^{\text {c }}$	12.28	12.28
Standard Enthalpy of Formation (liq)							
9	$-65.65 ;^{\prime}-65.81^{n}$	-65.84	-65.80	223 mme 5	-65.18; ${ }^{\prime}-65.33{ }^{\prime}$	-66.92	-65.18
4 m 8	$-66.82{ }^{9}$	-66.40	-66.82	234 mem 5	-64.47; ${ }^{\dagger}-64.62^{j}$	-66.30	-64.47
$22 \mathrm{mm7}$	-68.88; ${ }^{\prime}-69.03^{\prime}$	-69.11	-68.88	2233 mmmm 5	-66.51 ${ }^{1}$	-66.54	-66.51
$223 \mathrm{mmm6}$	-67.57i ${ }^{\prime}-67.72{ }^{\text {j }}$	-67.62	-67.57	2234 mmmm 5	-66.37 ${ }^{\text {i }}$	-66.40	-65.92
224 mmm 6	-67.60; ${ }^{\prime}-67.76^{\prime}$	-67.86	-67.60	2244 mmmm 5	-66.92 ${ }^{\text {i }}$	-66.95	-66.92
225 mmm 6	-70.11i ${ }^{\prime}-70.27{ }^{\prime}$	-70.44	-70.11	2334 mmmm 5	-66.43 ${ }^{\text {i }}$	-66.46	-66.43
$233 \mathrm{mmm6}$	-67.18; ${ }^{\prime}-67.34^{j}$	-67.13	-67.18	10	-71.92^{n}	-71.95	-71.92
235 mmm 6	-67.88; ${ }^{\prime}$-68.04 ${ }^{\text {j }}$	-68.08	-67.88	335 mmm 7	-72.85^{9}	-72.81	-72.84
$244 \mathrm{mmm6}$	-66.97; ${ }^{\text {i }}$-67.14 ${ }^{\text {j }}$	-67.37	66.97	$2233 \mathrm{mmmm6}$	$-72.54{ }^{9}$	-72.57	-72.53
334 mmm 6	-66.33:' -66.49 /	-66.52	-66.33	2255 mmmm 6	-77.33^{9}	-78.54	-78.25
$33 \mathrm{ee5}$	-65.82 ${ }^{\prime}$	-65.85	-65.82				

[^0] values based on $\Delta H_{f}^{\circ}(n$-nonane, liq, 298.15 K$)=-65.81 \mathrm{kcal} \mathrm{mol}^{-1}($ ref 19$)$ and enthalpy of isomerization (ref 3); uncertainty $\pm 0.25 \mathrm{kcal}^{(\mathrm{mol}}{ }^{-1}$.
$\mathrm{kcal} \mathrm{mol}^{-1}$ for four other isomers. The magnitude of the differences for the 75 liquid decanes is as follows: less than 0.20 kcal mol^{-1} for 44 isomeric decanes, $0.2-0.4 \mathrm{kcal} \mathrm{mol}^{-1}$ for $16 \mathrm{de}-$ canes, $0.4-1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ for 4 isomers, and $1.2-4.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for 11 other isomers. Since the experimental uncertainty in any one of these values is at least $\pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$, the calculated property values for nonanes and decanes are considered as reliable as the experimental and are recommended for general use. It is also important to note that the generalized trigonal additivity procedure is the most accurate of all procedures developed thus far for the correlation of the thermodynamic properties of the alkanes.

Acknowledgment

The authors gratefully acknowiedge the careful review of the manuscript and many valuable suggestions offered by F.D. Rossini. Our thanks are also due to Mrs. Constance W. Haas, Mrs. Beverly K. Boyd, and Mr. Daniel J. Tubbs of the Editorial Office of the Thermodynamics Research Center for help with the preparation of the manuscript.

Literature Cited

(1) Davies, G. F., Gilbert, E. C., J. Am. Chem. Soc., 63, 2730 (1941).
2) Desai, P. D., Dissertation, Texas A\&M University, 1968.
(3) Good, W. D.. J. Chem. Eng. Data, 14, 231 (1969).
(4) Good, W. D., J. Chem. Thermodyn., 2, 237 (1970)
(5) Good, W. D., J. Chem. Thermodyn., 4, 709 (1972).
(6) Greenshields, J. B., Rossini, F. D., J. Phys. Chem., 62, 271 (1958),
(7) International Council of Scientific Unions, CODATA Bull. 10, Dec 1973.
(8) Johnson, W. H., Prosen, E. J., Rossini, F. D., J. Res. Natl. Bur. Stand., 38, 419 (1947)
9) Labbauf, A., Greenshields, J. B., Rossini, F. D., J. Chem. Eng. Data, 6, 261 (1961).
(10) Morawetz, E., J. Chem. Thermodyn., 4, 139 (1972).
(11) Osborne, N. S., Ginnings, D. C., J. Res. Natl. Bur. Stand., 39, 453 (1947).
(12) Pilcher, G., Chadwick, J. D. M., Trans. Faraday Soc., 63, 2357 (1967).
(13) Pittam, D. A., Pilcher, G., J. Chem. Soc., Faraday Trans. 1, 68, 2224 (1972).
(14) Prosen, E. J., Jessup, R. S., Rossini, F. D., J. Res. Natl. Bur. Stand., 33, 447 (1944).
(15) Prosen, E. J., Maron, F. W., Rossini, F. D., J. Res. Natl. Bur. Stand., 46, 106 (1951).
(16) Prosen, E. J., Rossini, F. D., J. Res. Natl. Bur. Stand., 27, 289 (1941).
(17) Prosen, E. J., Rossini, F. D., J. Res. Natl. Bur. Stand., 27, 519 (1941)
(18) Prosen, E. J., Rossini, F. D., J. Res. Natl. Bur. Stand., 34, 163 (1945)
(19) Prosen, E. J., Rossini, F. D., J. Res. Natl. Bur. Stand., 34, 263 (1945).
(20) Rossini, F. D., J. Res. Natl. Bur. Stand., 6, 1 (1931); 7, 329 (1931); 22, 407 (1939).
(21) Rossini, F. D., Ind. Eng. Chem., 29, 1424 (1937)
(22) Rossini, F. D., Chem. Rev., 27, 1 (1940).
(23) Rossini, F. D., Pitzer, K. S., Arnett, R. L., Braun, R. M., Pimental, G. C., "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds", Carnegie Press, Pittsburgh, Pa., 1953.
(24) Scott, D. W., J. Chem. Phys., 60, 3144 (1974).
(25) Somayajulu, G. R., Zwolinski, B. J., J. Chem. Soc., Faraday Trans. 2, 68, 1971 (1972).
(26) Somayajulu, G. R., Zwolinski, B. J., J. Chem. Soc., Faraday Trans. 2, 70, 967 (1974).
(27) Somayajulu, G. R., Zwolinski, B. J., J. Chem. Soc., Faraday Trans. 2, 72, 2213 (1976).
(28) Zwolinski, B. J., et al., "Selected Values of Properties of Hydrocarbons and Related Substances', American Petroleum Institute Research Project 44, Thermodynamics Research Center, Texas Engineering Experiment Station, Texas A\&M University, College Station, Texas (loose-leaf data sheets, extant 1975).

Received for review October 28, 1975. Accepted December 22, 1976. Financial support provided partially by the American Petroleum Institute Research Project 44 of the Thermodynamics Research Center and by the Texas Engineering Experiment Station.

Activity and Osmotic Coefficients in Dilute Aqueous Solutions of Bi -Univalent Electrolytes at $25{ }^{\circ} \mathrm{C}$

Chal-fu Pan
Departmert of Chemistry, Alabama State University, Montgomery, Alabama 36101

Abstract

In nonassociative dilute aqueous electrolyte solutions, the Stokes and Robinson equation reduces to a simpler form, $\log \gamma_{ \pm}=\log f_{ \pm, \mathrm{DH}}+0.0156(h-\nu / 2) m$, where $f_{ \pm, \mathrm{DH}}$ is the mean rational activity coetficient calculated from the Debye-Hückel equation. Thus the mean molal activity coefficients of an electrolyte in dllute regions can be calculated from the equation if suitable values of a^{s} and h are available. The molal osmotic coefficients of a solution are related to the activity coefficients by means of the Gibbs-Duhem relation. A simple equation for calculating osmotic coefficients is derived; it takes the form $\phi=\phi_{\text {DH }}$ +0.018 hm where ϕ_{DH} is the molal osmotic coefficient of the solution calculated from the Debye-Hückel equation by use of the Gibbs-Duhem relation. These equations are applied to calculate the activity and osmotic coefficients in dilute aqueous solutions of some bi-univalent electrolytes, including chlorides, bromides, and perchlorates, concentration up to 0.1 m .

Hamer and Wu (2) have recently compiled numerous data of osmotic and activity coefficients in dilute solutions of 1-1 electrolytes. However, these coefficients for other types of
electrolytes in dilute regions are lacking in general. When the experimental data in more dilute regions are not available, they can be derived directly from equations containing parameters which are obtained experimentally at higher concentration regions. A method based on the Stokes-Robinson hydration model $(4,6)$ is proposed to solve this problem. Activity and osmotic coefficients in solutions of some 2-1 electrolytes are calculated and compiled in this communication.

In nonassociated dilute electrolyte solutions the StokesRobinson two-parameter equation reduces to a simpler form (4), i.e.

$$
\begin{equation*}
\log \gamma_{ \pm}=\log f_{ \pm, \mathrm{DH}}+0.0156(h-\nu / 2) m \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\ln \gamma_{ \pm}=\ln f_{ \pm . \mathrm{DH}}+0.036(h-\nu / 2) m \tag{2}
\end{equation*}
$$

in which $\gamma_{ \pm}$is the mean molal activity coefficient, $f_{ \pm, \mathrm{DH}}$ is the mean rational activity coefficient calculated from the DebyeHückel equation, h is the hydration number, ν is the stoichiometric ion number of the electrolyte, and m is the molality of the solution. The Debye-Huckel equation (5) is

$$
\begin{equation*}
\log f_{ \pm, \mathrm{DH}}=-\frac{A\left|z_{+} z_{-}-\right|\left(\left(^{1 / 2}\right)\right.}{1+B a\left(l^{1 / 2}\right)} \tag{3}
\end{equation*}
$$

[^0]: ${ }^{\text {a }} 1 \mathrm{kcal}=4.184 \mathrm{~kJ} .{ }^{b}$ Reference 9. ${ }^{c}$ Reference 19. ${ }^{a}$ Private communication, ERDA Energy Research Center, Bartlesville, Okla. ${ }^{e}$ References 19 and 28. 'Reference 3. 9 Reference 2. ${ }^{h}$ Reference 19, corrected for slight change in $\Delta H_{4}{ }^{\circ}$ for $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}$ (liq) due to changes in atomic weights. 'Calculated value based on $\Delta H_{f}^{\circ}\left(n\right.$-nonane, liq, 298.15 K) $=-65.81 \mathrm{kcal} \mathrm{mol}^{-1}$ (ref 19) and enthalpy of isomerization (ref 8); uncertainty $\pm 0.25 \mathrm{kcal} \mathrm{mol}^{-1}$. ${ }^{i}$ Calculated

